268 research outputs found

    A study of the relationship between cloud-to-ground lightning and precipitation in the convective weather system in China

    Get PDF
    International audienceIn this paper, the correlation between cloud-to-ground (CG) lightning and precipitation has been studied by making use of the data from weather radar, meteorological soundings, and a lightning location system that includes three direction finders about 40 km apart from each other in the Pingliang area of east Gansu province in P. R. China. We have studied the convective systems that developed during two cold front processes passing over the observation area, and found that the CG lightning can be an important factor in the precipitation estimation. The regression equation between the average precipitation intensity (R) and the number of CG lightning flashes (L) in the main precipitation period is R = 1.69 ln (L) - 0.27, and the correlation coefficient r is 0.86. The CG lightning flash rate can be used as an indicator of the formation and development of the convective weather system. Another more exhaustive precipitation estimation method has been developed by analyzing the temporal and spatial distributions of the precipitation relative to the location of the CG lightning flashes. Precipitation calculated from the CG lightning flashes is very useful, especially in regions with inadequate radar cover

    Charge analysis on lightning discharges to the ground in Chinese inland plateau (close to Tibet)

    No full text
    International audienceSince the summer of 1996, scientists from China and Japan have conducted a joint observation of natural cloud-to-ground lightning discharges in the Zhongchuan area that is located close to Qinghai-Xizang (Tibet) Plateau, China. It has been found that the long-duration of intracloud discharge processes, just before the first return stroke, lasted more than 120 ms for 85% of cloud-to-ground flashes in this area, with a mean duration of 189.7 ms and a maximum of 300 ms. We present the results of charge sources neutralized by four ground flashes and two intracloud discharge processes, just before the first return stroke, by using the data from a 5-site slow antenna network synchronized by GPS with 1 µs time resolution. The result shows that the altitudes of the neutralized negative charge for three negative ground flashes were between 2.7 to 5.4 km above the ground, while that of neutralized positive charges for one positive ground flash and one continuing current process were at about 2.0 km above the ground. The comparison with radar echo showed that the negative discharges initiated in the region greater than 20 dBZ or near the edge of the region with intense echoes greater than 40 dBZ, while positive discharge initiated in the weak echo region.Key words: Meterology and atmospheric dynamics (atmospheric electricity; convective processes; lightning) <p style="line-height: 20px;"

    Heteropolyacids supported on zirconia-doped γ, θ and α alumina: A physicochemical assessment and characterisation of supported solid acids

    Get PDF
    In this paper we carry out a surface study of promising supported solid acid catalysts commonly used for the production of high value chemicals derived from glycerol. In particular, γ, θ and α alumina (Al2O3) were modified by (i) grafting with 5 wt% zirconia, (ii) doping with 30 wt% silicotungstic acid (STA), and (iii) using both zirconia and STA. The aim is to rationalise the effect of these different parameters on structural properties and surface adsorption through a comprehensive multi-technique approach, including recently developed NMR relaxation techniques. XRD and laser Raman spectroscopy confirmed a strong interaction between STA and the γ-/θ-Al2O3 resulting in a distortion of the supported STA Keggin structure relative to that of bulk STA. Conversely, a much weaker interaction between the supported STA and α-Al2O3 was measured. NMR relaxation demonstrated that the STA doping increases the adsorption properties of the catalyst, particularly for γ-/θ-Al2O3. For catalysts based on α-Al2O3, such effect was negligible. Thermogravimetric/differential thermogravimetry (TGA/DTG) analysis suggested that zirconia-grafted and non-grafted θ-Al2O3 and γ-Al2O3 are suitable materials for increasing the thermal stability of STA whereas α-Al2O3 (both grafted and non-grafted) does not improve the thermal stability of STA

    The 2021 battery technology roadmap

    Full text link
    Sun, wind and tides have huge potential in providing us electricity in an environmental-friendly way. However, its intermittency and non-dispatchability are major reasons preventing full-scale adoption of renewable energy generation. Energy storage will enable this adoption by enabling a constant and high-quality electricity supply from these systems. But which storage technology should be considered is one of important issues. Nowadays, great effort has been focused on various kinds of batteries to store energy, lithium-related batteries, sodium-related batteries, zinc-related batteries, aluminum-related batteries and so on. Some cathodes can be used for these batteries, such as sulfur, oxygen, layered compounds. In addition, the construction of these batteries can be changed into flexible, flow or solid-state types. There are many challenges in electrode materials, electrolytes and construction of these batteries and research related to the battery systems for energy storage is extremely active. With the myriad of technologies and their associated technological challenges, we were motivated to assemble this 2020 battery technology roadmap

    Synergistic effect of quinary molten salts and Ruthenium catalyst for high-power-density Lithium-carbon dioxide cell

    Get PDF
    With a recent increase in interest in metal-gas batteries, the lithium-carbon dioxide cell has attracted considerable attention because of its extraordinary carbon dioxide-capture ability during the discharge process and its potential application as a power source for Mars exploration. However, owing to the stable lithium carbonate discharge product, the cell enables operation only at low current densities, which significantly limits the application of lithium-carbon dioxide batteries and effective carbon dioxide-capture cells. Here, we investigate a high-performance lithium-carbon dioxide cell using a quinary molten salt electrolyte and ruthenium nanoparticles on the carbon cathode. The nitrate-based molten salt electrolyte allows us to observe the enhanced carbon dioxide-capture rate and the reduced discharge-charge over-potential gap with that of conventional lithium-carbon dioxide cells. Furthermore, owing to the ruthernium catalyst, the cell sustains its performance over more than 300 cycles at a current density of 10.0Ag(-1) and exhibits a peak power density of 33.4mWcm(-2). Lithium-carbon dioxide cells are challenging due to the sluggish electron transfer in the Lithium carbonate in aprotic electrolyte. Here, the authors report synergistic effect of molten salt electrolyte and Ruthenium catalyst to enhance the electrochemical performance of Lithium-carbon dioxide batterie
    corecore